JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy.
نویسندگان
چکیده
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.
منابع مشابه
Complex Inhibitory Effects of Nitric Oxide on Autophagy
Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by ...
متن کاملGinsenoside Rg1 protects starving H9c2 cells by dissociation of Bcl-2-Beclin1 complex
BACKGROUND Autophagy can result in cellular adaptation, as well as cell survival or cell death. We investigated how ginsenoside Rg1(G-Rg1) regulates the relationship between autophagy and apoptosis induced by continuous starvation. METHODS H9c2 cells under continuous starvation were treated with or without ginsenoside Rg1, and autophagy and apoptosis related proteins were assessed over a cont...
متن کاملDissociation of Bcl-2–Beclin1 Complex by Activated AMPK Enhances Cardiac Autophagy and Protects Against Cardiomyocyte Apoptosis in Diabetes
Diabetic cardiomyopathy is associated with suppression of cardiac autophagy, and activation of AMP-activated protein kinase (AMPK) restores cardiac autophagy and prevents cardiomyopathy in diabetic mice, albeit by an unknown mechanism. We hypothesized that AMPK-induced autophagy ameliorates diabetic cardiomyopathy by inhibiting cardiomyocyte apoptosis and examined the effects of AMPK on the int...
متن کاملJNK1 differentially regulates osteopontin-induced nuclear factor-inducing kinase/MEKK1-dependent activating protein-1-mediated promatrix metalloproteinase-9 activation.
We have recently demonstrated that nuclear factor-inducing kinase (NIK) plays a crucial role in osteopontin (OPN)-induced mitogen-activated protein kinase/I kappa B alpha kinase-dependent nuclear factor kappa B (NF kappa B)-mediated promatrix metalloproteinase-9 activation (Rangaswami, H., Bulbule, A., and Kundu, G. C. (2004) J. Biol. Chem. 279, 38921-38935). However, the molecular mechanism(s)...
متن کاملBcl-xL Affects Group A Streptococcus-Induced Autophagy Directly, by Inhibiting Fusion between Autophagosomes and Lysosomes, and Indirectly, by Inhibiting Bacterial Internalization via Interaction with Beclin 1-UVRAG
Anti-apoptotic Bcl-2 and Bcl-xL are proposed to regulate starvation-induced autophagy by directly interacting with Beclin 1. Beclin 1 is also thought to be involved in multiple vesicle trafficking pathways such as endocytosis by binding to Atg14L and UVRAG. However, how the interaction of Bcl-2 family proteins and Beclin 1 regulates anti-bacterial autophagy (xenophagy) is still unclear. In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2008